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1. Introduction.

In this paper we give a compact development of the basic theory of
spectral multiplicity for second-order stochastic processes. This theory gives
a representation of a large class of such processes in terms of a sum of
filtered mutually-orthogonal orthogonal increment (o0.i.) processes. The
representation has been found very useful in applications to nonGaussian
signal detection [1] and to commuonication through channels perturbed by
additive noise [2]. [3]. especially when the channel has feedback.

The theory to be developed here originated in the work of Cramer [4] and
Hida [5]. Our development is directed toward obtaining the spectral represen-
tation in the elegant form given by Hida. Several paths are available: one may
simply quote Hida's results; one may quote the Hellinger-Hahn theorem (on
which Hida’s results are based) and then adapt that result to the representa-
tion of a second-order stochastic process; one may prove the Hellinger-Hahn
theorem, then do the adaptation; or one may give a direct proof of the spec-
tral representation. It is this last path that will be followed here. It has
some advantages over simply proving the Hellinger-Hahn theorem, since some
readers may be more comfortable with second-order stochastic processes than
with abstract Hilbert space; our development also gives some nice applications
of RKHS (reproducing kernel Hilbert spaces) theory. Moreover, as a

consequence of the development, we actually prove the Hellinger-Hahn theorem,

and it is stated at the end of the paper. Although the spectral 5 )

representation is well-known. there does not seem to be a readily-accessible fj
development that yields the form given by Hida. Since the development here is
explicit and based on RKHS theory, it may be useful in extensions to second-

order random fields. S
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2. Basic Definitions and Structure

Let T be an interval in R. For simplicity, we denote the end points as -«
and +©, but actually T can be any interval, finite or infinite, open, half-
open, or closed. (Xt). t in T, is a second-order stochastic process (SOSP) on
the probability space (1.B.P). <¢.*> will denote the inner product in
L2[O.B.P]. with Il the corresponding norm. Lt(X) will denote the closure in
Lz(ﬂ.B.P) of span{xs. s{t}, with L(X) the closure of span{Xs. s€T}. All equal-
ities given here are in the sense of L2(Q.B.P); thus X = y means that x and y
are equal a.e. dP; x = Zq&n means that (Z?yn) converges to x in L2(Q.B.P) as
N -» o, The following two assumptions will be made:

(A1) (Xt) is mean-square left-continuous on T, the mean-square right

2

limit X + exists whenever t+ € T, and sup HXtH o

t t€T

(A2) N LS(X) = {0}.
s€T

Assumption Al implies that the reproducing kernel Hilbert space (RKHS) of
the correlation function of (Xt). which we denote here as H(X), is separable,
as is L(X). A SOSP which satisfies A2 is said to be purely nondeterministic.
These two assumptions give rise to a left-continuous resolution of the
identity, as follows. Let Pt be the projection operator mapping the Hilbert
space L(X) onto Lt(x). The following result is an immediate consequence of

assumptions Al and A2.

Lemma 1: The family (Pt) has the following properties:
(a) If s > t, then PSPt = Ptps = Pt;

(b) P_ =P  for all t such that t- € T, where P_ x = 1im P_x for all x
t t—- t- st s

in L(X);

(c) P_, = lim Ps = O (operator);

sl-o




(d) Po=1lim P_ =1 (identity operator in L(X}).
s o s

The limits in (c) and (d) are in the strong operator topology: e.g..

P

-Qx

= lim Psx = 0 (element) for all x in L(X).

x|

It should perhaps be noted that m.s. left-continuity of (Xt) is not
necessary for left-continuity of the family {Pt' t € T}. For example, let

T = [0.1], let (Wt) be the standard Wiener process, and define

X

—Wt for t < 3

+Wt for t 2 3.

Then th - X%H2 =3t +3 for t <3, so (Xt) is not m.s. left-continuous at

t = 3. However, X, € sp(xs. s < ¥}, so L%(X) = LK—(X)' and Lt(X) = Lt_(X) for
t in (O,T].

The left-continuity of (Pt) is thus a weaker property than m.s. left-
continuity of (Xt). This property gives rise to other m.s. left-continuous

processes, as follows.

Lemma 2: Let y be in L(X), and define Zt = Pty. Then (Zt) is m.s. left-

continuous, Zt+ exists for all t+ in T, and sup IZtl < @, Moreover, (Zt) is
t€T

purely non-deterministic and has orthogonal increments.

Proof: The fact that (Zt) is m.s. left-continuous follows by left continuity

of (Pt)' Zt+ exists since the limit Pt+ = ;i: Ps exists. f:g "Zt" < iyl (Zt)

is purely non-deterministic since

n Lt(Z) cn Lt(X) = 0.
t€T t€T

If ty > ty 2 ty. then

E(Z, -Z, )2, =<(P, -P_ )y.P. y> =0
t3 o' Y t3 LY




since (P, -P, })x 1 L_ (X) = range(P_).
t3 t2 tl tl 0

Lemma 3: (Pt) has a finite or countably-infinite number of points of discon-
tinuity. If t and s are two such points, distinct, with Ptx = 0, Pt+x = x and

Ps+y =y, Psy =0, then x 1 y.

Proof: If Pt+x = X, Ptx =0, then x 1 LV(X). v { t, proving the second state-
ment. The first statement then follows, since separable L(X) contains at most
a countably-infinite number of mutually orthogonal elements. o
3. Canonical Representations

Suppose now that one could find a family {(Z:). n21} of mutually ortho-
gonal stochastic processes, each with orthogonal increments, such that the
closed linear span of ((22). n2l; s € (=t]}= Lt(Z) contains Lt(X) for all
t in T. Then, since the subspaces Lt(Zn) are orthogonal for fixed t and dif-

ferent values of n, L (X) C & L (Zn) ({.e.. xinL (X) =>x=2Z x,
t 1 t t nn

X € Lt(Zn)). Processes (Z?) having such properties are called tnnovations
processes for (Xt). The number of terms in the index set is the multiplicity
of the innovations process. We will first show that there always exists an
innovations process for (Xt) and ‘then prove the existence of an innovations
process of minimal multiplicity. For example, if (Xt) has orthogonal

increments, then the minimal multiplicity is one.

M
It can be that Lt(X) c e

Lt(zn) where (Zn) are o.i.processes, but with
n=1

the reverse inclusion not holding. A representation of the form
M
Lt(X) = @ Lt(zn) for all t in T, with (Zn) being o.i.processes, is called a

canonical representation for (Xt).




A

The natural question: when does a SOSP (Xt) have a canonical representa-
: tion? We note firs¢ that if T = R and (Xt) is m.s. continuous and wide-sense

stationary, then X, = fheiktdY(A) where Y(A\) is a PND O £ P.

Theorem 1: Suppose that (Xt) is a SOSP satisfying assumptions (A-1) and (A-2).

Then (Xt) has a canonical representation.

Proof: Since the RKHS H(X) of X is separable, then by the isometry between

L(X) and H(X) (Theorem IX.2), L(X) is also separable. Thus, there exists a

countable CONS (Zn) for L(X). Define elements (Z_) as follows. Let Z, = Zl.
n 1

Given 21.22.....Zn. let Pn be the projection operator in L(X) with range space
n

equal to the closed linear span of U L(Z,). where L(Z,) = span{P . Z , t € T}.
i=1

If range(Pn) = L(X), the process is terminated. Otherwise, Zn+1 is defined by

n+1 T .n+l
Zn+1 =2 - PnZ .

If the above procedure terminates for some finite n, then necessarily

n
L(X) = span{ U L(Zi))' If the process does not terminate for some finite n,
i=1

suppose that y € L(X) and y 1 Span{ U L(Z,)}. Theny L Z' for all i 2 1 by
11

the construction of {Zi.iZI} and so llyll = 0. Thus, L(X) = span{ U L(in)).
n21

Define L (Z,) = span(iszi, s<t), 121, t €T. To see that

Lt(zi) 1 LS(ZJ) for 1 # j and all s,t in T. one proceeds as follows. By con-
struction, Zj 1 L(Zk) for all k # j. and Ptzj = Zj - Yo where Yo 1 range(Pt).
Thus, Yo 1 Lt(zk)' and since ZJ 1 L(Zk) o) Lt(zk)' Pth 1 Lt(zk)' Hence

Ptzj 1 PsZk for all x { t and for all t in T. By symmetry, Ptzk 1 PSZJ. for
all s ( t, all t in T. This gives Lt(zj) 1 Ls(zk) for § # k and all s,t in T,

so span{ U Lt(Z )} ® Lt(Z ) for all t in Tand L(X) = ® L(Zn)'
n1 © P np1 - " n)1




Since Lt(zn) c Lt(X) for all n 2 1and all t in T, it remains only to

show that Lt(X) ce Lt(zn) for all t in T. We already have that L(X) = & L(Zn)
n n

and Lt(zn) 1 Ls(Zm) for n # m, all s,t in T. Thus, by the continuity of the

operator Pt'

P,L(X)

L (X) = P,[0 L(Z,)]

Pt span g L(Zn)

span U Lt(zn) =9 Lt(zn)' o
n n

Definition 1: Let (yt). t € T be an orthogonal increment process on (0.8.P),
such that the right m.s. limit Yos exists for all a in T (except at the right

end-point). Then, "y will denote the Lebesgrne-Stieltjes measure on the Borel

2 2
sets of T defined by uy(a.b] = Hyb+n - Hya+u .

continuous, then uy[a.b) = Hybnz - Hyauz. Lz["y] will denote the set of all

If (yt) is also m.s. left

Borel-measurable functions f: T 4»R# (extended real line) such that
ITlf(t)lzduy(t) < . The Lebesgue-Stieltjes measure p, defined by y will be

called the spectral measure for y.

Corollary: From Chapter VIII, the preceding theorem shows that (Xt) has the

Y

canonical representation

Mt
Xt = Z Fi(t.s)dBi(s). all t €T,
i=1 Y0

N
where Lt(X) =L (B) for all t € T, L (B) = @ L (B,). the (B,) are mutually
t t i=lt i i

orthogonal o.1. processes, Bi(t) = Ptzi' Fi(t's) =0 for s > t, and Fi(t")

belongs to L2[duBi] for all t € T, all § { M.




Remark. Suppose that (yt) is such that y _ € Lt(Z) for all t, where Z € L(X).
t
t 2
Then y , = J of(t.s)dP.Z for all t € T. This gives lly I” =

t 2 .
f_wlf(t.s)l duz(s). Thus, py << . This result will be used frequently.

Proposition 1: Suppose (Xt) has the representation given in the preceding
Corollary, except that it is not known whether or not Lt(g) = Lt(X) for all t
in T. This equality then holds, for all t in T, if and only if the following

condition is satisfied: For every t in T,

M
p fwai(s.u)gi(u)duB (u) =0 for all s { t
i=1 i

M
t 2
implies = f_mlgi(u)l dup (u) = 0.
i=1 i
This condition can be restated as follows: For every t in T, and every

i (M, {Fi(s.-). s { t} is complete in L2[(—°.t].uBi].

t
Proof: Every element in Lt(Bi) has the form I_wgi(s)dBi(s) for some g; in

Lz[uB ]. from Chapter VIII. If Lt(g) # Lt(X) for some t € T, then there
i
M t
exists an element Zt = iflj'_mgi(s)dBi(s) in Lt(g) such that Zt 1 Lt(X). But
N
then, for s  t, (Zt.Xs) = iflf_mFi(s.u)gi(u)duBi(u). Thus, in order that

Lt(g) # Lt(X). it is necessary (and, obviously, sufficient) that there exist

M
t 2
elements (gi. i < M}, g € Lz(pBi). such that 1§1I—°|gi(U)| duBi(u) # 0, while
iflffwl’i(s.u)gi(u)duai(u) = 0 for all s ¢ t.
This proves the statement for the first condition. The alternate (equiv-

alent) condition then clearly holds, using the fact that every element g4 in

t
Lz[uni] defines an element in Lt(Bi) having the representation f_mgi(s)dBi(s).

8]




4. Proper Canonical Representatjons

Theorem 1 proves the existence of a canonical representation for (Xt).
The Corollary gives a very useful representation of Xt for each t € T, when a
canonical representation exists. However, the number of terms, M, appearing in

the series is not specified. nor do the measures (uB ) have any particular
i

relationship to each other, nor is anything said about uniqueness. These
points will all be addressed as we now proceed to obtain a proper canonical

representation.

Definition 2: Let 9(X) be the closed linear span of all elements x in L(X)

such that for some discontinuity point t, of (Pt' t € T}, Pt x =0, Psx =s
i

for s > t,- Define the subspace €(X) C L(X) by €(X) = @(X)l. the set of all

elements y in L(X) such that y 1 9(X).

We have already seen that right-m.s. continuity of (Xt) at t, is not a

necessary condition in general, for P, =P . .
to to+

then right-m.s. continuity of (Xt) at t, is a necessary and sufficient

However, if (Xt) is an OIP,

condition for P = P_ . One notes that for t € t,, for (X ) an OIP,
to+ to 0 t

2 2
EIX, . -X |°=E|X, , -X, +X -X|
to‘l' to t0+ to to t

2 2 2

=E|X, ,-X |°+EIX, -X|°2EIX, , -X |-

to+ to to t to+ to

From a Hilbert space viewpoint, Xt is the unique element in Lt (X) which is
0

0
nearest to Xt+ when (Xt) is an OIP. In the general case, of course, this need
not be true, so that X can belong to L, (X) even though E|X -X |2 =
t. .+ t t. .+ t
0 0 0 (4]
2
IIXt . Xt " > 0.

0 o




Lemma 4: Let P be the operator in L(X) defined by P, .u = lim P_u. Then
Yot ot slt, S
0

P is well-defined for each t.€ T (except the right endpoint) and P is a
tot 0 tot

projection operator.
Proof: See Theorem 1IV.10.
Proposition 2: x € €(X) <=>t a'HPtxH is continuous on T.

Proof: Note first that t - HPtxH continuous at to is equivalent to Ptx - Pt X
0

as t | ty: since (Pt) is already half-continuous on T and for t > to:

IPx - P x"2 = IlPthI2 - WP x"2. Thus, t = HPtxH continuous on T is
o 0
equivalent to P, x = P, .x for all t, such that t.+ is defined. Now, suppose
ty tot o o
that t = IIP xIl is continuous on T and that P, .y =y, P_ y = 0. Then {for
t t0+ to
t > to. X,y> = (x.Pty> = (Ptx.y>. Since Ptox = Pto+x. this gives

X,y> = (x.Pto+y> = <Pto+x.y> = <Ptox.y> = <x.Ptoy> = 0. Thus, x 1 9(X).

Conversely, suppose that x € €(X), and that t = HPtx" is discontinuous at

1l
t = to. Then IIPt +xll = IIPt xll + a, where a > 0. Let Xg = Pt & Pt x; then
0 0 0 0
1 1 1 1 1 1
lIx 0" = a and X, 1l range(P ). so Pto+ 0 = Xo° Ptoxo = 0; X, belongs to 9(X).
Then <x.x=> = <x,P. x> = P, x. x> = ixn? = a. tThis contradicts
0 to+ O 0 0 0
x 1 9(X). "
M
Proposition 3 : Suppose that Z € €(X). Then Lt(Z) = @ Lt(zn)' M { =, where
n=1

Lt(Z) = span{F;Z, st} ((Pth). n2l} is a family of mutually orthogonal m.s.

continuous processes, each with orthogonal increments.




Moreover, if y € Lt(Z). then there exists {Fn(t.-). n { M} depending on y
M t
and such that y= Z J‘ F (t,s)d(P.Z )
=1 Jo D s'n

where F (t.s) = 0 for s > t and F _(t,*) belongs to L,[du _]. for each t in T.
n n 2 7"

Proof: If Z € €(X), then by Prop. 2, t = HPtZH is continuous, so (PtZ) is a
purely-nondeterministic m.s. continuous process. Moreover, IIPtZII2 < HZHZ. all
t in T. The existence of a canonical representation then follows from Thecrem
1. The representation of y in Lt(Z) follows from th~ previous results on

SOSP. 8]

Suppose that t, is a discontinuity point of the family {Pt' t € T} of

i
projection operators. We use H(ti) to denote the dimensionality of the sub-

space of L(X) spanned by the elements y which satisfy Pt J=Y Pt y = 0.
i i

H(ti) is thus the multiplicity of the eigenvalue 1 for the projection operator

P -P .
t,+ ty

Proposition 4: For each t in T,
M(t,)

N
X, = n§1 En(t's)dBn(s) * 2 2 Ko 37%1 4
= ! t <t j=1

where {Bn. n21} is a mutually orthogonal family of o.i. processes, each m.s.

continuous; Fn(t.s) =0 for s > t and Fn(t.°) is in Lz[duBn] forn ; 1; (ti)

are the discontinuities of (Pt)' and the {wiJ. J g M(ti). i21} are o.n. random

variables such that for all discontinuity points ti. Pt + Pt .
i i

swij = ¢ij for s > ti

- 10 -




Proof: Immediate, using Prop. 3 and the definitions of €(X) and 9(X).

Proposition 5: For the representation of Xt given in Prop. 4, and each

discontinuity point ty

|<xti+.¢ij>| >0 all j < M(t,)
where H(ti) and {wij, Jj ¢ H(ti). i 2 1} are defined as in Prop. 4.

Proof: If not, then since wij 1 range(Ps) for s £ ty. (Xs.wij) = 0, all

s {t,; if also (Xt + > =0 then P

1 i

n LS(X). This contradicts Prop. 4.
s)ti

wij ti+wij = 0, since range(Pti+) =

D

Corollary: Let (Zt) be the projection of (Xt) onto 9(X). Then (HZ‘H) has jumps

at all t,; the jump at t has magnitude equal to

1
H(ti)
<X, ..¢ >|2
z . .
j=1 t+ Vg

Proof: The sum is the squared norm of the projection of (Xt) onto the subspace

spanned by the eigenvectors of Pti+ -~ Pti. o

Proposition 6: Suppose (Xt) has orthogonal increments. If Zt is the

projection of Xt onto ¥(X), then t = "Zt" is a step function.

M(t,)

Proof: Consider X |<xt—xs.¢ij>|2 for t > s 2 t,- As (Xt) is PND and has

J=1

- 2
orthogonal increments, E(Xt—xs)u =0 ifue LS(X). so that <xt-xs,¢ij>

for t > s > ti' Thus, for t > ti‘

M(t,) M(t,) M(t,)

2 _ _ 2 _ 2
z |<xt €= Z |<xt X = = |<xti+.¢ij>| X

W
j=l iJ j:l j:l

+X R
ti+ t1+ ij

- 11 -

=0




Corollary: If (Xt) has orthogonal increments, then for each discontinuity

H(ti)
point t, the value of X <Xt.¢

i
i jo1

is independent of t for t > t, and is

137713 i

zero for t ¢ ti'

Lemma 4: Suppose Yt € Lt(X) and that Yt is orthogonal to 9(X). Then there
exists a family (Bn) of mutually-orthogonal m.s. continuous processes, each
with orthogonal increments, and functions (Fn(t.-); n{M} on T such that

(a) the measures (uB ) are ordered by absolute continuity:
n

"B >> "B for n { M;
n n+l

(b) Fn(t.s) =0 for s > t and Fn(t.-) belongs to L2[uBn] for all n { M;
Mt
(c) Y, = ZJ _F (t,s)dB (s) (if M = », then the equality holds as a
t n=1—°°n n
limit in the mean as M - «).
Proof: We need only show the existence of a representation (c) having property

(a). since the existence of a representation as in (c) and (b) has already

been shown.

Let (Zn) be orthogonal elements in €(X) such that Pth(X) = @ Lt(zn)'

n2l
all t in T, PQ the projection of }(X) onto €(X), as in Theorem 1. Note that
PL (X) = span{PX_, s<t}. Let B, = 1§1aizi' where lail #0 forall i >1
and 2 |a, [20Z,1% ¢ ®. Then, denoting F, as the map t - IP ZI2,

n21
2 2 2
FBI(t) = IP B I = 2 lail WP Z I = 2 |“1|2in(t)'
121 121

Thus, e ) for i 2 1. In fact, Mg > m for all v in €(X). since any
1 i 1

such v has the representation v = Znan. P? the projection of L(X) onto L(Zn).

and p << py by previous results (see the Remark following Theorem 1).
v n

- 12 -




We thus have Bl in €(X) such that Mp >> My for all Y in €(X). Let L(Bl)l
1

be the orthogonal complement in €(X) of L(Bl)' Then L(Bl)l = GnL(yn). where

(yn) is constructed from an o.n. set in L(Bl)l. Define B2 = zia2iyi' where

|2 i 2

|a2i| > 0 for all i, and X |a2i ly]U” < . Then sz >> py for all Y in

il
1
L(B,) . and >> .
1 ¥, " VB,
Continuing in this way, we obtain a sequence of elements {Bn. n{M} such

that an >> uBn+lfor n2 1, and Ls(Bn) 1 Lt(Bm) for n # m, all sand t in T;

the last statement is proved as in the proof of Theorem 1. Morecver, since
{L(Bn). n21} are orthogonal subspaces of C(X) and C(X) is separable, there

exists an at-most countable number of such (Bn), and by Zorn's Lemma C(X) =

M M
® L(B_) where B can be infinite. This gives PQL (X) = ©
n=1 " t n=1

T. Thus, if Yt € PQLt(X). we have that Yt = ZM Y?, where Y? is the projection

Lt(Bn) for all t in

1 ¢t

n t n 2 2
of Y onto L (B ). Since Y = [_F (t,s)dPB , with ElYtl = JT\Fn(t.s)l den,

the representation of part (c) follows. o

A distinguishing characteristic of the measures (uB ) defined in Lemma &
n

is that Mg > My for all Y in €(X). Mg > My for all Y1 L(Bl)' and
1 2

Mg >> My for all Y 1 G?L(Bi). Sﬁch a set will be called a maximal chain of
n+l

measures. The preceding result shows the existence of a canonical
representation such that the measures defined by the projection of (Xt) onto
€(X) form a maximal chain. Nothing has been said about uniqueness. This will

now be addressed.

M
Lemma 5: Suppose Lt(X) = @ Lt(zn) for all t in T with My >> gy for n2l,
n=1 n n+1
N
where (pz ) is a maximal chain of measures, M { «». Consider @& L(Yi) C L(X).
n i=1
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where uYi >> uYi+1 for i 2 1. Then N { M and pYi << uzi for 1 { N.

Proof: Clearly p N << Hy for all 1 { N, since Z1 is a maximal element. We can
Y 1

assume M ( ©. Let k { min(N,M) be the smallest integer n such that uYn <<y

is false (we will show that no such n can exist). Then qu has the Lebesgue

decomposition p , = + o, where << .00 1 . Thus, there exists a
ok = et % M hg %k tbg

Borel A C T such that ak(A) = ak[T]. uzk(A) 0. We will show that o [T] = 0.

%

k

For 1 < k, >>u > py > o,. Define u, = [ [————] (s)dP. Z,, 1 < k,
"z, Y1 . k 1777y, s“1

do, \%
k i
and v, = IT[T__;] (s)dP_Y,. i < k. Since v, € L(Y"), we have v, 1 vy and

for 1 # j, 1,j < k. Similarly, u, L u, and Pu, 1 P u, for all

P Vi 1 Ptvj " j Y4 Yy
s.,t in Tand i,j { k-1 such that i # j. Note that p =0, and p_ = o, for
u, k vy k
i < k.
k-1

Claim: ? L(ui) = {x in L(X): B << ak).

Proof of Claim: Let W € L(X), Hy << o Then W = 2? W w = I& gi(s)dPsZi.
t 2 2
Fw(t) = Z? F'i(t). F'i(t) = {mlgij duzi. where Fv(t) = HPth . From these

t 2 t 2
relations and <o, F (t)=]lg duz = [ |h, |“do, for all 1 ¢ M.
Hy wi( ) o il { _ml i k
However, for 1 2 k, »» while by hypothesis o, 1 , s00, 1 for
l‘Z'kz k =Yz, k™72

i > k. Now, st lgi duz f Ih | da for all t in T, all i { M; for i ) k,
ItIA|h |2dak = J Ih |2dak. all t, while Itlg |2IAduz = 0, all t, since

i ; i i i

t 2 t 2

uzk(A) = 0. Since u'i[A n (-=,t)] = I_w!gil IAduzi = J_mlhil IAdak' h =0

a.e. do

t 2 t 2 t
e b > k. But since f_mlhil IAdak = f_olhil dﬂk = f_¢|81| dﬂzi- we

- 14 -




have g = 0 a.e. duZ , 1 2 k. This gives uw1n2 =0 i 2 k, since
i

w12 = I |g |2duZ and soW—k;w with F, (1) = S*lg, [Pan, = 1%, %o, -
i TI8 g . > vy W T Bl Gz = by oy

do,
2 k .
Itlh | ﬁ———duz ; since the Radon-Nikodyn derivative duw /duZ is unique up to
- 1Ay L 1 4

i
k

%
—=| [st . a.e. :
%][sgn(gi)] a.e dnzi

i

do,
a.e. duz equivalence, g = Ihil[
i

dak %
€ L(ui). where u, = LTEEEFJ (s)dPsZi. We have Ptui =

i

We now show that v,

ft{—fgg]%(s)dPSZi. and so

—a L7

i

Sihy(s) |(sten &,)(s)eP
doy 3
A NOICE RO FOUE Y ANOU LIS
i

M k-1
Since w, as in L(u,), W= X w_ belong to ® L(u ), so that
i i 1=1 i 1 i
k-1

{x € L(X): p, << ak) Cc ? L(ui).

k-1
To prove the reverse inclusion, if W= I IT h,dP. u

1=1 it

il

k-1 dak %
(by definition of ui) iflji hikizz—] (s)dPsZi. then Fw(t)
- i

k-1
z

fthfdak. so
i=]
Hy << o - The Claim is proved.

By the definition of vy it is clear that "v = op for i < k, since

i
Pv =J‘| k_12(s)ap.y,.
ti — qui] s i

Thus, we have M, << o for 1 { k and vy € L(X). so by the Claim,
i

k-1

v, € @ L(ui) i=1,....k
1

i

- 15 -




k-1

This requires that v, = X J' C J(s)dl’ u, all {1 ¢ k where

i j=1 J
k-1 2
z .f.r ICiJ(s)l duu (s) <=, 1 < k. Since the definition of uJ gives B, =0
J=1 J J
k-1 ¢ 2
foerk-.wehaveF (t ,-p (—“t]- (=.t]= Z [ IC (s)|“do, (s)
it k =1 = 1] k

for all t in T. all 1 { k. Thus,

k-1
z |Ic, (s)|2= 1 a.e. do(s) for 1 =1.....k
j=1

Similarly., since v, € L(Yi)' vy € L(YJ) and L(Yi) 1 L(YJ). giving Psvi 1 Ptvj

for 1, { k, 1 # J and all s,t in T, one has for 1 # J

O0=EPvPv,

itV
= (since EP_u ﬁ-. =0 form#m', mm' € k-1, all s,t)
k-1
z It Cin(s)C (Ssdu (s)
m=1 -»
k-1
= (since p, =o0p. m<{k-1) 2 st C; (S)C o(s)do, (s)
m m=] -o
k-1
=J* ZC (S)C (S) (s)
— m=l

all t in T. Hence

k-1 |
Cim(s)cjm(s) =0 a.e. dak(s) for 1 # §.

We now have a family of k vector-valued functions, Ci' each Ci having k-1
components. Si(s) = (Cim(s)""'ci.k—l(s” such that a.e. dak(s)

k-1 5
zlc, (s)|=1 i=1,....k
=1 1

k-1
and JflC‘J(S)CmJ(S) =0 i #m.
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Suppose that the measure oy gives positive measure to some Borel set in

T. Then, for all s in a set of positive 0, measure, we have a set of k

elements in Ek-1

. the ith being (Cil(s)""'ci k—l(s)) which are orthonormal.
Since any orthonormal set of elements belonging to Ek—l can contain at most
k-1 elements, this contradiction establishes that o is identically zero.

Hence, we have (from the original Lebesgue decomposition of p k) Moy < u k-
Y Y Z

Thus,

pYi << uzi for 1 { min(N,M).

Suppose now that M ( N. Define

. %
d“YM+1
u, = J. (s)dP Z i¢M
i T fhﬁzi s i
r -%
quM+l
vy = IT de J (s)dPst i ¢ M+1.

- 1

We then have p = = = u_ and
u, YM+l vy

M M
01 L(ui) = {w € 01 L(Zi): H, << pYM+1};

the equality being proved as in the case of the Claim, replacing o, by u +1°

Since H, << p for 1 ¢ M+1, this gives

i +
M+1 M
® L(v,) C®L(u,).
1 1

Proceeding in the same manner as for oy previously, one obtains that u +1[T]

must equal zero. This shows that N { M, proving the theorem. o
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Corollary: Suppose that
M
L(X) = 01 L(Zi) o9
where (Ptzi) are m.s. continuous processes and have ordered spectral measures,

"Z >> My , n <M. Then if
n n+l

L(X) = ©) L(Y,) 0 9

where Hy >»> My n21, it is necessary that N = M and My << Hz << My
n n+l n n n

Proof: It remains only to show that if (Xt) is m.s. continuous and

L(X) = & L(Z,). with >>
X i=1 i) ) uzn uZn+1

T t 2
But y in L(X) requires that y = Z?:l Ib hdPZ . so Fy(t) = Zf 1 fblhil dF,

. < M, then >> f in L(X).
n e uzl uy or any y in L(X)

i
and since uzi << uzl for all { 2> 1, one has that uy << uzl. o

Lemma 5 makes no assumptions on the discontinuities of (Pt): in fact,
those discontinuities (if any) do not enter into the representation. Thus,
one obtains another corollary to Lemma 5, stated in the following theorem. It
is due to Cramér [ ] and the representation it contains will be termed

A

"Cramér's representation.”

Theorem 2. Suppose that (Xt) is a SOSP satisfying assumptions (Al) and (A2).

Then there exists (Zn. n 2 1} in L(X) such that

Lt(X) = 1:1L‘(Z“)

and uzn >> uzn+1. all n { M. If also there exists (Yn. n 2 1} in L(X) with

2

Lt(X) = 121Lt(yn) for all t in T,
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and >> for n ( N, then N = M and << for O { n ( M.
uYn uYn+l u2n+l uYn+1 uzn+1

The unique number M {O < M ¢ «} is the multiplicity of (Xt). Any x in Lt(X)

has the representation

Mt
X = igljgcn(t.s) dPsZn.

where Gn(t.') is in Qz[uzn] and Zﬁzlfécﬁ(t.s)duzn < o,

The next theorem is essentially due to Hida [ ]: the representation given

will be termed "Hida's representation™.

Theorem 3: Let (Xt). t € T (an interval) be a second-order stochastic process
satisfying assumptions (Al) and (A2). Then
d(ti)

X =30 S (t.s)dB (s) +2 I £ (1)Q
t n=1 7 _'n n ti<t j=1 ij ij

for all t in T, where the equality holds in L2(Q.B.P). and with the RHS having
the following properties:
(1) (Bn) is a mutually-orthogonal family of m.s. continuous orthogonal-

increment stochastic processes, with spectral measures (uB ) satisfying
n

uB >> My for n2l.
n n+l

(2) Fn(t.s) =0 for s > t and Fn(t.-) belongs to Yz[uBn]. all t in T, all

|
n2l, and X f:wIFn(t.s)|2duB (s) < @ for each t in T.
n=1 n

(3) (ti) are the discontinuities of (Lt(X). t €T},

Lz(ﬂ.B.P)

Lt(X) = span(xs. s { t} : 1.e., those points t such that

L, (X) # N L (X).
Y ) st °




(4) 1<d(t,) <= for each t,.
(5) {Qy. § € d(t;). 1 2 1) are o.n. elements in Ly(R.5.P).
6) Q

Jd(e). 121,
(1) £,,(t) = X.Q > all t, (4.). and
(8) L(x)=8L(B)® span{Q; ;. 3 € A(t,). ¢ < t).

and Bn(t) are orthogonal in Lz(ﬂ.ﬂ.P). for n { M, all t €T,

Moreover, if (Xt) has a representation

d(ti)

t .. : : .
X, =5 I8 Fi(r.s)a;(s) + tfﬁt Jfl O

where (FA). (Bﬁ). (Qij)' (fij) have properties (1)-(8). then N = M, the

measures pn and Hy. are mutually absolutely continuous for n { M,
n n

dug
F/(t.s) = F_(t.s) D a.e. duBA. n ¢ M. and Q;, = AQ;, for § < d(t,). each

Fop. iy

n

d(t,)
ti' where Ai is a unitary matrix in R .

The multiplicity of (Xt) is then defined to be sup(M, dim 9(X)).

To see that the multiplicity as defined in Theorem 3 is the same as that
defined in Theorem 2, let {Qij' J < M(ti). discontinuities (ti) of (Pt)} be a

c.o.n. set in 9(X) such that PtiQij =0, Pti+QiJ = Qij' J < H(t‘). For each

C
ij. (Ptqij) is a PND OI, with Hq giving measure one to ti' pAi {Ti} = 0.

ij J

M
Let (Bn) be such that €(X) = oi:lL(Bn)' Define (Zn) by

Zn = Bn + Yn n { min(M, dim 9(X))
=B if dim $(X) < n { M
=Y if M < n < dim 9(X).




M(ti)

where n { @ in all cases. The sequence (Yn) is given by Yn = zi2j=l n

a; .
1)

Qij'

where the {(a?j): n2l1, j¢ M(ti)' all discontinuities ti} are defined as

follows

aiJ # 0, all 1];

Yn+l 1 sp(Yl....Yn}. alln> 1;

n+l

aU # 0 if and only if Q

i3 € sp{Yl.YZ....Yn}. n > 1.

To prove that L(X) = Q?:?im B(X)

sp(Yn. n 2 1}. Since (Qij) is a c.o.n. set in 9(X), H(X) = sp{Yn. n 2 1} if

L(Zi)' it is sufficient to show that %(X) =

and only if Q, 6 € sp{Yn. n 2 1} for all ij. Let (Qij) be the set of all (Qij)

iJ
such that (Qij) is not in sp{Yn. n 2 1}. Then, by definition of (Y“). there

exists an element Y = 213“13013 in {Yn. n 2 1} where ajy # 0 if and only if

Qij € {Qij: Qij ¢ sp(Yn, n 2 1}}. This requires that Y 1 Qij for all Qij' a

contradiction.

The representation given in Theorem 3 is called the proper canonical
representation of (xt). Although the elements (Bn), (Fn). (Qij)' and (fij)
appearing in the representation are not unique, their number is unique and
those appearing in any given proper canonical representation can be obtained
from the corresponding elements of any other such representation.

The space ¥(X) consists only of {0} if (Xt) is m.s. continuous. If (Pt)
has a discontinuity at ty then necessarily (Xt) is not m.s. right-continuous
at to: ve have seen that the converse does not hold. In order for (Pt) to have

a discontinuity at to: it is necessary and sufficient that N LS(X) contain a
s>t
0
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non-zero element orthogonal to Lt (X).

Corollary: Suppose that (Xt) is m.s. continuous on T. Then for all t in T,

t
X, = nflj_an(t.s)dBn(s) where (Fn(t.-). n { M} and (Bn. n 2 1} are as in

Theorem 3. The covariance function of (Xt) has the representation

M
T tAs
EXth = nflf Fn(t.u)Fn(s.USduBn(u) for {uBn. n { M} defined as in Theorem 3.

If T is a finite interval, T = [a,b], then the covariance operator Rx of (Xt).

2
Rx: L2[a.b] 4»L2[a.b]. has trace equal to Trace Rx = EJletl dt =

M
b.t 2
Z I lFp(t0) [Tduy ().
n=1 n
Proof: Follows directly from Theorem 3.

The development as given by Hida [5] replaces assumption (Al) with the
assumption that L(X) is separable and that the m.s. limits Xt+ and Xt_ exist

for all t. L:(X) is then defined as N LS(X). The projection operator P: is
s>t

the operator with range equal to L:(X). The family (P:. t € T} is then a right-
continuous resolution of the identity. This defines a self-adjoint linear
operator T in L(X). T = IT;}dP;. The Hellinger-Hahn Theorem [6, p. 247 ff.] is
then applied to obtain the proper canonical representation.

5. General Formulation of Spectral Multiplicity

The preceding results were derived for a second-order stochastic process.
However, they can be formulated purely in terms of a {iven self-adjoint
operator in Hilbert space. The following result contains the Hellinger-Hahn

theorem and related results ([6]. Sec. VII.2), and consequences.




Theorem 4: Let T be a self-adjoint bounded linear operator in the real

separable Hilbert space H. Let {P,, A € R} be a left-continuous resolution of

the identity determined by T. Then:

(1)

(2)

(3)

(4)

(5)

H=¢€® % where 9 is the closed linear span of all eigenvectors of T,
and € = 9;

For any x in €, the map A = HPAxH is continuous;

There exists an orthonormal basis {en. n 2 1} for € such that Mo >> B
all n 2 1, where B, is the Lebesgue-Stieltjes measure on R determined by
the non-decreasing function A = MPxennz;
If 9 # H, (vn. n 2 1} is any other basis for € such that v >> LI for
all n 2 1, where v is determined by A = HPAvnuz. then b~ My for all
n>1;

Suppose that € has dimension M 2 1, and that {en. n 2 1} and (un. n 2 1}
are as in (3). Let {kn. n > 1} be the set of distinct eigenvalues of T,
let m(n) be the dimensionality of the subspace spanned by the eigen-
vectors for the eigenvalue An. and let (u;. i { m(n)} be orthonormal

eigenvectors corresponding to An' Then, for any x in H and any A in R,

there exists a family of Borel-measurable functions {Fn(k.~). n ¢ M},

M
depending on x, such that X Ifmlpn(x.s)lzdun(s) < @, and
n=1
| m(n)
Px= ZINF (As)dPe + I I <ulooul.
"n=1 AMEL T
Each summand in the first term on the RHS of this expression is the
K—IIA
limit of partial sums of the form Z F (A\.s)[P - P_Je ., where
k=0 TN K TSy s

g < Sie1 for 0 ¢ 1 < K-1, s& € (sk.sk+1]. and the limit is taken as

sup{sk+1 -5 ¢ 0 <k {K-1}) 20 and Sk 1 o, So | ~o,




Proof: This theorem is simply a reformulation of the preceding results on the
spectral representation of a purely deterministic m.s. left-continuous SOSP,
replacing L(X) by H. The only use made of the assumptions (Al) and (A2) was to
show that L(X) is separable and to establish a left-continuous resolution of
the identity, the family {Pt’ t € R} of Lemma 1. Mean-square left continuity
of the stochastic process (PtZ) for Z in L(X) corresponds to left-continuity
of t = HPtZH.

In the present theorem, the given operator T has a left-continuous
resolution of the identity. The space H is assumed to be separable. The

theorem then follows from Theorem 3 above. o
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